FANDOM


File:Highly composite number Cuisenaire rods 6.png

A highly composite number (or anti-prime[1]) is a positive integer with more divisors than any smaller positive integer has. The term was coined by Ramanujan (1915). However, Jean-Pierre Kahane has suggested that the concept might have been known to Plato, who set 5040 as the ideal number of citizens in a city as 5040 has more divisors than any numbers less than it.[2]

The related concept of largely composite number refers to a positive integer which has at least as many divisors as any smaller positive integer.

ExamplesEdit

The initial or smallest 38 highly composite numbers are listed in the table below OEIS A{{{1}}}. The number of divisors is given in the column labeled d(n).

Order HCN
n
prime
factorization
prime
exponents
prime
factors
d(n) primorial
factorization
1 1 0 1
2* 2 $ 2 $ 1 1 2 $ 2 $
3 4 $ 2^2 $ 2 2 3 $ 2^2 $
4* 6 $ 2\cdot 3 $ 1,1 2 4 $ 6 $
5* 12 $ 2^2\cdot 3 $ 2,1 3 6 $ 2\cdot 6 $
6 24 $ 2^3\cdot 3 $ 3,1 4 8 $ 2^2\cdot 6 $
7 36 $ 2^2\cdot 3^2 $ 2,2 4 9 $ 6^2 $
8 48 $ 2^4\cdot 3 $ 4,1 5 10 $ 2^3\cdot 6 $
9* 60 $ 2^2\cdot 3\cdot 5 $ 2,1,1 4 12 $ 2\cdot 30 $
10* 120 $ 2^3\cdot 3\cdot 5 $ 3,1,1 5 16 $ 2^2\cdot 30 $
11 180 $ 2^2\cdot 3^2\cdot 5 $ 2,2,1 5 18 $ 6\cdot 30 $
12 240 $ 2^4\cdot 3\cdot 5 $ 4,1,1 6 20 $ 2^3\cdot 30 $
13* 360 $ 2^3\cdot 3^2\cdot 5 $ 3,2,1 6 24 $ 2\cdot 6\cdot 30 $
14 720 $ 2^4\cdot 3^2\cdot 5 $ 4,2,1 7 30 $ 2^2\cdot 6\cdot 30 $
15 840 $ 2^3\cdot 3\cdot 5\cdot 7 $ 3,1,1,1 6 32 $ 2^2\cdot 210 $
16 1260 $ 2^2\cdot 3^2\cdot 5\cdot 7 $ 2,2,1,1 6 36 $ 6\cdot 210 $
17 1680 $ 2^4\cdot 3^1\cdot 5\cdot 7 $ 4,1,1,1 7 40 $ 2^3\cdot 210 $
18* 2520 $ 2^3\cdot 3^2\cdot 5\cdot 7 $ 3,2,1,1 7 48 $ 2\cdot 6\cdot 210 $
19* 5040 $ 2^4\cdot 3^2\cdot 5\cdot 7 $ 4,2,1,1 8 60 $ 2^2\cdot 6\cdot 210 $
20 7560 $ 2^3\cdot 3^3\cdot 5\cdot 7 $ 3,3,1,1 8 64 $ 6^2\cdot 210 $
21 10080 $ 2^5\cdot 3^2\cdot 5\cdot 7 $ 5,2,1,1 9 72 $ 2^3\cdot 6\cdot 210 $
22 15120 $ 2^4\cdot 3^3\cdot 5\cdot 7 $ 4,3,1,1 9 80 $ 2\cdot 6^2\cdot 210 $
23 20160 $ 2^6\cdot 3^2\cdot 5\cdot 7 $ 6,2,1,1 10 84 $ 2^4\cdot 6\cdot 210 $
24 25200 $ 2^4\cdot 3^2\cdot 5^2\cdot 7 $ 4,2,2,1 9 90 $ 2^2\cdot 30\cdot 210 $
25 27720 $ 2^3\cdot 3^2\cdot 5\cdot 7\cdot 11 $ 3,2,1,1,1 8 96 $ 2\cdot 6\cdot 2310 $
26 45360 $ 2^4\cdot 3^4\cdot 5\cdot 7 $ 4,4,1,1 10 100 $ 6^3\cdot 210 $
27 50400 $ 2^5\cdot 3^2\cdot 5^2\cdot 7 $ 5,2,2,1 10 108 $ 2^3\cdot 30\cdot 210 $
28* 55440 $ 2^4\cdot 3^2\cdot 5\cdot 7\cdot 11 $ 4,2,1,1,1 9 120 $ 2^2\cdot 6\cdot 2310 $
29 83160 $ 2^3\cdot 3^3\cdot 5\cdot 7\cdot 11 $ 3,3,1,1,1 9 128 $ 6^2\cdot 2310 $
30 110880 $ 2^5\cdot 3^2\cdot 5\cdot 7\cdot 11 $ 5,2,1,1,1 10 144 $ 2^3\cdot 6\cdot 2310 $
31 166320 $ 2^4\cdot 3^3\cdot 5\cdot 7\cdot 11 $ 4,3,1,1,1 10 160 $ 2\cdot 6^2\cdot 2310 $
32 221760 $ 2^6\cdot 3^2\cdot 5\cdot 7\cdot 11 $ 6,2,1,1,1 11 168 $ 2^4\cdot 6\cdot 2310 $
33 277200 $ 2^4\cdot 3^2\cdot 5^2\cdot 7\cdot 11 $ 4,2,2,1,1 10 180 $ 2^2\cdot 30\cdot 2310 $
34 332640 $ 2^5\cdot 3^3\cdot 5\cdot 7\cdot 11 $ 5,3,1,1,1 11 192 $ 2^2\cdot 6^2\cdot 2310 $
35 498960 $ 2^4\cdot 3^4\cdot 5\cdot 7\cdot 11 $ 4,4,1,1,1 11 200 $ 6^3\cdot 2310 $
36 554400 $ 2^5\cdot 3^2\cdot 5^2\cdot 7\cdot 11 $ 5,2,2,1,1 11 216 $ 2^3\cdot 30\cdot 2310 $
37 665280 $ 2^6\cdot 3^3\cdot 5\cdot 7\cdot 11 $ 6,3,1,1,1 12 224 $ 2^3\cdot 6^2\cdot 2310 $
38* 720720 $ 2^4\cdot 3^2\cdot 5\cdot 7\cdot 11\cdot 13 $ 4,2,1,1,1,1 10 240 $ 2^2\cdot 6\cdot 30030 $

The table below shows all the divisors of one of these numbers.

The highly composite number: 10080
10080 = (2 × 2 × 2 × 2 × 2)  ×  (3 × 3)  ×  5  ×  7
1
×
10080
2
×
5040
3
×
3360
4
×
2520
5
×
2016
6
×
1680
7
×
1440
8
×
1260
9
×
1120
10
×
1008
12
×
840
14
×
720
15
×
672
16
×
630
18
×
560
20
×
504
21
×
480
24
×
420
28
×
360
30
×
336
32
×
315
35
×
288
36
×
280
40
×
252
42
×
240
45
×
224
48
×
210
56
×
180
60
×
168
63
×
160
70
×
144
72
×
140
80
×
126
84
×
120
90
×
112
96
×
105
Note:  Numbers in bold are themselves highly composite numbers.
Only the twentieth highly composite number 7560 (= 3 × 2520) is absent.
10080 is a so-called 7-smooth number OEIS A{{{1}}}.

The 15,000th highly composite number can be found on Achim Flammenkamp's website. It is the product of 230 primes:

$ a_0^{14} a_1^9 a_2^6 a_3^4 a_4^4 a_5^3 a_6^3 a_7^3 a_8^2 a_9^2 a_{10}^2 a_{11}^2 a_{12}^2 a_{13}^2 a_{14}^2 a_{15}^2 a_{16}^2 a_{17}^2 a_{18}^{2} a_{19} a_{20} a_{21}\cdots a_{229}, $

where $ a_n $ is the sequence of successive prime numbers, and all omitted terms (a22 to a228) are factors with exponent equal to one (i.e. the number is $ 2^{14} \times 3^{9} \times 5^6 \times \cdots \times 1451 $). More concisely, it is the product of seven primorials:

$ b_0^5 b_1^3 b_2^2 b_4 b_7 b_{18} b_{229}, $

where $ b_n $ is the primorial $ a_0a_1\cdots a_n $. [3]

File:Highly composite numbers.svg

Prime factorizationEdit

Roughly speaking, for a number to be highly composite it has to have prime factors as small as possible, but not too many of the same. By the fundamental theorem of arithmetic, every positive integer n has a unique prime factorization:

$ n = p_1^{c_1} \times p_2^{c_2} \times \cdots \times p_k^{c_k}\qquad (1) $

where $ p_1 < p_2 < \cdots < p_k $ are prime, and the exponents $ c_i $ are positive integers.

Any factor of n must have the same or lesser multiplicity in each prime:

$ p_1^{d_1} \times p_2^{d_2} \times \cdots \times p_k^{d_k}, 0 \leq d_i \leq c_i, 0 < i \leq k $

So the number of divisors of n is:

$ d(n) = (c_1 + 1) \times (c_2 + 1) \times \cdots \times (c_k + 1).\qquad (2) $

Hence, for a highly composite number n,

  • the k given prime numbers pi must be precisely the first k prime numbers (2, 3, 5, ...); if not, we could replace one of the given primes by a smaller prime, and thus obtain a smaller number than n with the same number of divisors (for instance 10 = 2 × 5 may be replaced with 6 = 2 × 3; both have four divisors);
  • the sequence of exponents must be non-increasing, that is $ c_1 \geq c_2 \geq \cdots \geq c_k $; otherwise, by exchanging two exponents we would again get a smaller number than n with the same number of divisors (for instance 18 = 21 × 32 may be replaced with 12 = 22 × 31; both have six divisors).

Also, except in two special cases n = 4 and n = 36, the last exponent ck must equal 1. It means that 1, 4, and 36 are the only square highly composite numbers. Saying that the sequence of exponents is non-increasing is equivalent to saying that a highly composite number is a product of primorials.

Note, that although the above described conditions are necessary, they are not sufficient for a number to be highly composite. For example, 96 = 25 × 3 satisfies the above conditions and has 12 divisors but is not highly composite since there is a smaller number 60 which has the same number of divisors.

Asymptotic growth and densityEdit

If Q(x) denotes the number of highly composite numbers less than or equal to x, then there are two constants a and b, both greater than 1, such that

$ \ln(x)^a \le Q(x) \le \ln(x)^b \, . $

The first part of the inequality was proved by Paul Erdős in 1944 and the second part by Jean-Louis Nicolas in 1988. We have[4]

$ 1.13862 < \liminf \frac{\log Q(x)}{\log\log x} \le 1.44 \ $

and

$ \limsup \frac{\log Q(x)}{\log\log x} \le 1.71 \ . $

Related sequencesEdit

Highly composite numbers higher than 6 are also abundant numbers. One need only look at the three or four highest divisors of a particular highly composite number to ascertain this fact. It is false that all highly composite numbers are also Harshad numbers in base 10. The first HCN that is not a Harshad number is 245,044,800, which has a digit sum of 27, but 27 does not divide evenly into 245,044,800.

10 of the first 38 highly composite numbers are superior highly composite numbers. The sequence of highly composite numbers OEIS A{{{1}}} is a subset of the sequence of smallest numbers k with exactly n divisors OEIS A{{{1}}}.

Highly composite numbers whose number of divisors is also a highly composite number are for n = 1, 2, 6, 12, 60, 360, 1260, 2520, 5040, 55440, 277200, 720720, 3603600, 61261200, 2205403200, 293318625600, 6746328388800, 195643523275200 OEIS A{{{1}}}. It is extremely likely that this sequence is complete.

A positive integer n is a largely composite number if d(n) ≥ d(m) for all mn. The counting function QL(x) of largely composite numbers satisfies

$ (\log x)^c \le \log Q_L(x) \le (\log x)^d \ $

for positive c,d with $ 0.2 \le c \le d \le 0.5 $.[5][6]

Because the prime factorization of a highly composite number uses all of the first k primes, every highly composite number must be a practical number.[7] Many of these numbers are used in traditional systems of measurement, and tend to be used in engineering designs, due to their ease of use in calculations involving fractions.

See alsoEdit

NotesEdit

ReferencesEdit

Template:High-risk Template:Citation Style documentation/lua Template:Citation Style documentation/cs1 Template:Citation Style documentation/lead (online)

Template:High-risk Template:Citation Style documentation/lua Template:Citation Style documentation/cs1 Template:Citation Style documentation/lead

Template:High-risk Template:Citation Style documentation/lua Template:Citation Style documentation/cs1 Template:Citation Style documentation/lead

Template:High-risk Template:Citation Style documentation/lua Template:Citation Style documentation/cs1 Template:Citation Style documentation/lead Annotated and with a foreword by Jean-Louis Nicolas and Guy Robin.

External links Edit

Template:Divisor classes Template:Classes of natural numbers

Community content is available under CC-BY-SA unless otherwise noted.