FANDOM


The double factorial is a version on the factorial, defined as \(n!! = n \cdot (n - 2) \cdot (n - 4) \cdot \ldots\).[1] In other words, it is made by multiplying all the positive odd numbers up to n if n is odd, or multiplying all the positive even numbers up to n if n is even.

The first few values of \(n!!\) for \(n\) = 0, 1, 2, 3, ... are 1, 1, 2, 3, 8, 15, 48, 105, 384, 945, 3840, 10,395, 46,080, 135,135, 645,120, ... (OEIS A006882) The sum of the reciprocals of these numbers is 2.059407405342577...

When \(n\) is even,  \(n!! = (\frac{n}{2})! 2^{(\frac{n}{2})}\).

It should be noted that \(n!!\) is not equivalent to \((n!)!\) (nested factorial). Double factorial actually grows slower than factorial.

The multifactorial of nonnegative integers is defined recursively as:

Multifactorials
k width="25" style="text-align:Template:Math A-number
1 {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, 6402373705728000, ...} A000142
2 {1, 1, 2, 3, 8, 15, 48, 105, 384, 945, 3840, 10395, 46080, 135135, 645120, 2027025, 10321920, 34459425, 185794560, 654729075, 3715891200, 13749310575, 81749606400, ...} A006882
3 {1, 1, 2, 3, 4, 10, 18, 28, 80, 162, 280, 880, 1944, 3640, 12320, 29160, 58240, 209440, 524880, 1106560, 4188800, 11022480, 24344320, 96342400, 264539520, 608608000, ...} A007661
4 {1, 1, 2, 3, 4, 5, 12, 21, 32, 45, 120, 231, 384, 585, 1680, 3465, 6144, 9945, 30240, 65835, 122880, 208845, 665280, 1514205, 2949120, 5221125, 17297280, 40883535, 82575360, ...} A007662
5 {1, 1, 2, 3, 4, 5, 6, 14, 24, 36, 50, 66, 168, 312, 504, 750, 1056, 2856, 5616, 9576, 15000, 22176, 62832, 129168, 229824, 375000, 576576, 1696464, 3616704, 6664896, ...} A085157
6 {1, 1, 2, 3, 4, 5, 6, 7, 16, 27, 40, 55, 72, 91, 224, 405, 640, 935, 1296, 1729, 4480, 8505, 14080, 21505, 31104, 43225, 116480, 229635, 394240, 623645, 933120, 1339975, ...} A085158
7 {1, 1, 2, 3, 4, 5, 6, 7, 8, 18, 30, 44, 60, 78, 98, 120, 288, 510, 792, 1140, 1560, 2058, 2640, 6624, 12240, 19800, 29640, 42120, 57624, 76560, 198720, 379440, 633600, 978120, ...} A114799
8 {1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 33, 48, 65, 84, 105, 128, 153, 360, 627, 960, 1365, 1848, 2415, 3072, 3825, 9360, 16929, 26880, 39585, 55440, 74865, 98304, 126225, 318240, ...} A114800
9 {1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 22, 36, 52, 70, 90, 112, 136, 162, 190, 440, 756, 1144, 1610, 2160, 2800, 3536, 4374, 5320, 12760, 22680, 35464, 51520, 71280, 95200, ...} A114806

Sources Edit

  1. Double Factorial from Wolfram MathWorld
Community content is available under CC-BY-SA unless otherwise noted.